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Context

All along their life, complex industrial systems are subjected to two kinds of
maintenance:

• Corrective Maintenance (CM, repair):
after a failure (burn-in defects, wear-out), and intends to put the system
functional again.

• Preventive Maintenance (PM):
while the system is in operational conditions, and intends to slow down
the wear process and reduce the frequency of occurrence of failures.
Condition based PM are carried out according to the results of
inspections and degradation or operation controls.

→ To present a modelling of the dependency between corrective and
condition-based maintenances considering imperfect maintenance e�ciency.

→ Extend competing risks models initially de�ned for perfect maintenance.
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Modelling the maintenance process
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• Times of maintenance (PM and CM): {Ci}i≥1
• Inter-maintenance times (PM and CM): Wi = Ci − Ci−1, i ≥ 1

• Types of maintenance:

Ui =

{
1 if the ith maintenance is preventive
0 otherwise

• Counting processes:


{Kt}t≥0 PM and CM
{Nt}t≥0 CM
{Mt}t≥0 PM
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Stochastic modelling

The maintenance intensities:

• The global maintenance intensity:

λKt (K ,U) = lim
∆t→0

1

∆t
P(Kt+∆t − Kt− = 1|Ft−)

• The corrective maintenance intensity:

λNt (K ,U) = lim
∆t→0

1

∆t
P(Nt+∆t − Nt− = 1|Ft−)

• The preventive maintenance intensity:

λMt (K ,U) = lim
∆t→0

1

∆t
P(Mt+∆t −Mt− = 1|Ft−)

where Ft corresponds to the history of the process at t.

Usually, Ft = σ ({Ks ,UKs}0≤s≤t).

• λKt (K ,U) = λNt (K ,U) + λMt (K ,U)

→ PM and CM intensities can entirely de�ne the maintenance process as the
likelihood function for estimation purposes.
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The competing risks framework

Cooke and Paulsen (1994)

After the kth maintenance, we de�ne two risk variables :

• Yk+1 = potential time to next maintenance, if it is a PM (PM risk).

• Zk+1 = potential time to next maintenance, if it is a CM (CM risk).

Observations

In practice, Yk+1 and Zk+1 are not observed. The actual observations are:

• The inter-maintenance time: Wk+1 = min (Yk+1,Zk+1)

• The next kind of maintenance :

Uk+1 =

{
1 if Yk+1 < Zk+1 (PM)
0 if Zk+1 < Yk+1 (CM)
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De�nitions and notations

Joint survival function of (Y1,Z1)

S(y , z) = P(Y1 > y ,Z1 > z)

Sub-survival functions

S
∗
Z (z) = P(Z1 > z ,Z1 < Y1) = P(W1 > z ,U1 = 0)

S
∗
Y (y) = P(Y1 > y ,Y1 ≤ Z1) = P(W1 > y ,U1 = 1)

Distributions of W1 and U1

SW1
(w) = S

∗
Y (w) + S

∗
Z (w)

P(U1 = 1) = P(Y1 ≤ Z1) = S
∗
Y (0)

The diagnostic function φ: Probability of PM beyond w

φ(w) = P(Y1 ≤ Z1|W1 > w) = P(U1 = 1|W1 > w)=
S∗Y (w)

S∗Y (w) + S∗Z (w)
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Usual competing risks models (UCR)

Independent risks model (IUCR)

Y1 ⊥ Z1

→ Easy computations but not a realistic assumption considering PM and CM.

Proportional Hazards model (PH)

W1 ⊥ U1

→ φ is constant.

Delay Time model (Christer [02])

Y1 = A + C , Z1 = B + C

where A,B and C are mutually independent random variables.

→ When A and B are exponentially distributed, it is a PH model and φ is
constant.
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The Random Sign Assumption (Cooke [93])

De�nition: U1 ⊥ Z1

−→ φ is maximum at the origin.

The Repair Alert (RA) model (Lindqvist-Stove-Langseth [06]):

• Random sign assumption

• P(Y1 ≤ y |Z1 = z ,Y1 < Z1) =
G(y)

G(z)
, G(0) = 0,G is increasing.

• q = P(Y1 < Z1) = P(U1 = 1)

Intensity Proportional Repair Alert (IPRA) model: G = ΛZ1 : φ is decreasing.

→ Other models based on the Random Sign assumption such as the Highly
Correlated Censoring model (Bunea and Bedford [02])
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The alert-delay model (AD - Dijoux,
Gaudoin [09])

De�nition

Y1 = pZ1 + E

• p ∈ [0, 1].

• Z1 ⊥ E .
• Z1 and E positive random variables.

The exponential alert-delay model

• Z1 ∼ Exp(λ)

• E ∼ Exp(µ)

→ φ is increasing.
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The generalized competing risks models

Principle: To generalize the UCR approach by using the past of the
maintenance process in order to take into account imperfect maintenances: the
{(Wi,Ui)}1≤i≤k are not iid.

Generalized conditional survival functions:

Sk+1(y , z ;Wk ,Uk) = P(Yk+1 > y ,Zk+1 > z |Wk ,Uk)

→ Generalization of the S∗, CS∗ and φ functions by conditioning to the past
(Wk ,Uk).

φk+1(w ;Wk ,Uk) = P(Uk+1 = 1|Wk+1 > w ;Wk ,Uk)

→ Intensities, distributions of the observations, likelihood function can be
easily derived from the Sk+1.

λNt (K ,U) =

[
− ∂

∂z
SK

t−+1(y , z ;W1, . . . ,UK
t−

)

]
(t−CK

t−
,t−CK

t−
)

SK
t−+1(t − CK

t−
, t − CK

t−
;W1, . . . ,UK

t−
)
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The generalized virtual age models (GVA)

Principle: After the kth maintenance, the system behaves as a new one having
been operational an age Ak without being maintained.

P(Wk+1 > w ,Uk+1 = u|Wk ,Uk) = P(W > w + Ak ,U = u|W > Ak)

where (W ,U) has the same distribution as (W1,U1).

λNt (K ,U) = λc(t − CK
t−

+ AK
t−

), where λc(t) =

[
− ∂

∂z
S1(y , z)

]
(t,t)

S1(t, t)

Example: PM and CM are ARA∞:

Ak =


0 if k = 0

(1− ρc)(Ak−1 + Wk) if the kth maintenance is corrective

(1− ρp)(Ak−1 + Wk) if the kth maintenance is preventive
15
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Two approaches to build a GCR model

Based on generalized virtual age models: It is necessary to specify:

• The competing risks model for a new system (IPRA, DT, AD, ...).

• The maintenance e�ciencies for each kind of maintenance based on
virtual age assumptions.

Based on a recon�guration of the parameters: It is necessary to specify:

• The competing risks model for a new system: CR(Θ0).

• The evolution of the parameters according to the past of the maintenance
process (wear-out, e�ciency, reactivity, monitoring, ...) CR(Θk) .
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First classes of GCR models

Conditionally Independent Generalized Competing Risks models (CIGCR -
Dijoux, Doyen, Gaudoin [08]): Conditionally to the past {Wi,Ui}1≤i≤k, the
risks Yk+1 and Zk+1 are independent.

Sk+1(y , z ;Wk ,Uk) = SYk+1
(y ;Wk ,Uk) SZk+1

(z ;Wk ,Uk)

→ These models are identi�able.
→ IUCR+GVA = CIGCR

Generalized Proportional Hazards models (GPH - Deloux, Dijoux, Fouladirad

[12]): After the kth maintenance, time to next maintenance Wk+1 and kind of
next maintenance Uk+1 are independent conditionally to the past.

P (Wk+1 > w ,Uk+1 = u|Wk ,Uk) = P (Wk+1 > w |Wk ,Uk)P (Uk+1 = u|Wk ,Uk)

→ PH+GVA=GPH
→ The maintenance intensities remain proportional.
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Generalized Random Sign models (GRS)

De�nition: Conditionally to the past {Wi,Ui}1≤i≤k, Uk+1 and Zk+1 are
independent.

Properties:

• φk+1(.;Wk ,Uk) is maximum at the origin.

• RS+GVA 6= GRS

• There is a condition of existence of a GRS model similar to the one
presented by Cooke [93] for UCR models.

∀t ≥ 0, ∀k ≥ 1,

∫ ∞
t

λMck+u(k;Wk ,Uk)e
−

∫ u
t λ

K
ck+v (k;Wk ,Uk )dv

du

<

∫ ∞
0

λMck+u(k;Wk ,Uk)e
−

∫ u
0
λKck+v (k;Wk ,Uk )dv

du
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Generalized Repair Alert model

De�nition:

• Generalized random sign assumption

• P(Yk+1 ≤ y |Zk+1 = z ,Yk+1 < Zk+1,Wk ,Uk) =
Gk+1(y ;Wk ,Uk)

Gk+1(z ;Wk ,Uk)
Gk+1(0;Wk ,Uk) = 0,Gk+1(.;Wk ,Uk) are increasing.

• q(Wk ,Uk) = P(Yk+1 < Zk+1|Wk ,Uk)

→ Multiple parametrizations are possible

→ Possibility to de�ne a Generalized highly correlated censoring model.
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Generalized Alert Delay models (GAD)

Yk+1 = pk+1Zk+1 + Ek+1

• Ek+1 is independent of Zk+1 conditionally to the past of the maintenance
process

• pk+1 = p(Wk ,Uk) ∈ [0, 1].

→ pk+1 is related to the PM policy and the monitoring of the system.

→ The conditional distribution of Zk+1 re�ects the impact of past
maintenances on the risk of failure and the general wear-out of the system.

→ The conditional distribution of Ek+1 re�ects the evolution of the reactivity of
the maintenance team.

→ AD+GVA 6= GAD
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Examples of GAD models

Exponential GAD models consist in GAD models where the conditional
distributions of Zk+1 and the conditional distributions of Ek+1 are exponential
with respective parameters λk+1 = λk+1(Wk ,Uk) and µk+1 = µk+1(Wk ,Uk).

−→ Multiple potential parametrizations for λk+1, µk+1 and pk+1 (Dijoux,
Gaudoin)

GAD model associated with virtual age

• A new system has a Weibull type hazard rate.

• The e�ect of CM is of the virtual age type:

P(Zk+1 > z |Wk ,Uk) =
SZ (Ak + z)

SZ (Ak)

• The model is GAD : Yk+1 = pZk+1 + Ek+1, with a constant alert
threshhold p ∈ [0, 1].

• The conditional distribution of Ek+1 is exponential with parameter µ.
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The model

• GAD model Yk+1 = pk+1Zk+1 + Ek+1.

• pk+1 = δ

k∑
i=1

k∏
j=i

(1−Uj )

p.

−→ p is the nominal alert threshold, δ is a parameter related to the
impact on the threshold after consecutive failures (p = 0.8, δ = 0.8).

• The conditional distribution of Zk+1 is exponential with parameter
λk+1 = λ+ αk.

−→ λ is the initial failure rate, α is a parameter related to the ageing of
the system (λ = 1, α = 0.01).

• The conditional distribution of Yk+1 is exponential with parameter

µk+1 = β

k∑
i=1

k∏
j=i

(1−Uj )

µ.

−→ µ is the nominal delay rate, β is a parameter related to the impact
on the delay after consecutive failures (µ = 5, β = 1.2).
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Figure : MSE for λ̂ Figure : MSE for µ̂ Figure : MSE for p̂

Figure : MSE for δ̂ Figure : MSE for β̂ Figure : MSE for α̂

−→ Rather slow convergence for λ̂, µ̂, rather fast convergence for δ̂, α̂.
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EDF data

→ Dataset provided by EDF.
→ PM and CM times (in days) of a speci�c component of an electricity
production system.
→ 5 PM and 24 CM are observed.
→ The observations are right-censored at time 6113.

CM: 290 CM: 336 CM: 353 CM: 413

PM: 444 CM: 453 CM: 563 CM: 585

. . . . . . . . . . . .

CM: 6093 Cens: 6113

Table : EDF dataset

λ̂ µ̂ p̂ δ̂ β̂ α̂

Fail. rate Delay Rate threshold imp. threshold imp. delay ageing

0.004 0.0011 0.75 0.13 1.07 1.7 10−5

Table : Parameter estimation for the EDF dataset26
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Conclusion

• Development of a wide variety of competing risks models for imperfect
maintenance.

• Numerous parametrizations are possible which require expert opinions on
the system.

• The parameters allow to describe phenomena not all present for usual
competing risks: the intrinsic wear-out of the system, the evolution of the
reactivity of the maintenance team, the evolution of the monitoring, PM
e�ciency and CM e�ciency.

Prospects

• Identify a small number of tractable and �exible models, which provide
good �t to real data.

• Transcribe faithfully the expert opinions in the modelling (Bayesian
approach)

• Build model selection criteria (extend the procedures based on the
diagnostic function for UCR models to GCR models)28


	Context
	Modelling the maintenance process
	The competing risks framework
	Generalized Random Sign Models and Generalized Alert Delay Models
	Simulations results and applications to real data
	Conclusion and future work

