

Generalized Random Sign and Alert Delay Models for Imperfect Maintenance

Yann Dijoux, Olivier Gaudoin

AMMSI - Pau 2013

Grenob

Context

- 2 Modelling the maintenance process
- 3 The competing risks framework
- Generalized Random Sign Models and Generalized Alert Delay Models
- 5 Simulations results and applications to real data
- 6 Conclusion and future work

université de technologie

Context

Context

- 2 Modelling the maintenance process
- 3 The competing risks framework
- 4 Generalized Random Sign Models and Generalized Alert Delay Models
- 5 Simulations results and applications to real data
 - Conclusion and future work

Grenoble

Context

All along their life, complex industrial systems are subjected to two kinds of maintenance:

- Corrective Maintenance (CM, repair): after a failure (burn-in defects, wear-out), and intends to put the system functional again.
- Preventive Maintenance (PM):

while the system is in operational conditions, and intends to slow down the wear process and reduce the frequency of occurrence of failures. Condition based PM are carried out according to the results of inspections and degradation or operation controls.

 \rightarrow To present a modelling of the dependency between corrective and condition-based maintenances considering imperfect maintenance efficiency.

 \rightarrow Extend competing risks models initially defined for perfect maintenance.

Modelling the maintenance process

Modelling the maintenance process

- The competing risks framework
- 4 Generalized Random Sign Models and Generalized Alert Delay Models
- 5) Simulations results and applications to real data
 - Conclusion and future work

Grenob

Modelling the maintenance process

- Times of maintenance (PM and CM): $\{C_i\}_{i\geq 1}$
- Inter-maintenance times (PM and CM): $W_i = C_i C_{i-1}, i \ge 1$

• Types of maintenance:

$$U_i = \begin{cases} 1 & \text{if the } i^{\text{th}} \text{ maintenance is preventive} \\ 0 & \text{otherwise} \end{cases}$$
• Counting processes:
$$\begin{cases} \{K_t\}_{t\geq 0} & \text{PM and CM} \\ \{N_t\}_{t\geq 0} & \text{CM} \\ \{M_t\}_{t\geq 0} & \text{PM} \end{cases}$$

Grenoble

Stochastic modelling

The maintenance intensities:

- The global maintenance intensity: $\lambda_t^{\kappa}(\kappa, U) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(\kappa_{t+\Delta t} - \kappa_{t^-} = 1 | \mathcal{F}_{t^-})$
- The corrective maintenance intensity:

$$\lambda_t^N(K,U) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(N_{t+\Delta t} - N_{t-} = 1 | \mathcal{F}_{t-})$$

• The preventive maintenance intensity:

$$\lambda_t^M(K, U) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P(M_{t+\Delta t} - M_{t^-} = 1 | \mathcal{F}_{t^-})$$

where \mathcal{F}_t corresponds to the history of the process at t.

Usually, $\mathcal{F}_t = \sigma\left(\{K_s, U_{K_s}\}_{0 \le s \le t}\right)$.

•
$$\lambda_t^{\kappa}(K,U) = \lambda_t^{N}(K,U) + \lambda_t^{M}(K,U)$$

 \rightarrow PM and CM intensities can entirely define the maintenance process as the likelihood function for estimation purposes.

The competing risks framework

The competing risks framework

Cooke and Paulsen (1994)

After the k^{th} maintenance, we define two risk variables :

- Y_{k+1} = potential time to next maintenance, if it is a PM (PM risk).
- $Z_{k+1} = \text{potential time to next maintenance, if it is a CM (CM risk).}$

Observations

In practice, Y_{k+1} and Z_{k+1} are not observed. The actual observations are:

- The inter-maintenance time: $W_{k+1} = \min(Y_{k+1}, Z_{k+1})$
- The next kind of maintenance :

$$U_{k+1} = \begin{cases} 1 & \text{if } Y_{k+1} < Z_{k+1} & (\mathsf{PM}) \\ 0 & \text{if } Z_{k+1} < Y_{k+1} & (\mathsf{CM}) \end{cases}$$

Grenoble

Definitions and notations

Joint survival function of
$$(Y_1, Z_1)$$

$$S(y, z) = P(Y_1 > y, Z_1 > z)$$

Sub-survival functions

$$S_Z^*(z) = P(Z_1 > z, Z_1 < Y_1) = P(W_1 > z, U_1 = 0)$$

$$S_Y^*(y) = P(Y_1 > y, Y_1 \le Z_1) = P(W_1 > y, U_1 = 1)$$

Distributions of W_1 and U_1

$$S_{W_1}(w) = S_Y^*(w) + S_Z^*(w)$$
$$P(U_1 = 1) = P(Y_1 \le Z_1) = S_Y^*(0)$$

The diagnostic function ϕ : Probability of PM beyond w

$$\phi(w) = P(Y_1 \le Z_1 | W_1 > w) = P(U_1 = 1 | W_1 > w) = \frac{S_Y^*(w)}{S_Y^*(w) + S_Z^*(w)}$$

Usual competing risks models (UCR)

Independent risks model (IUCR)

 $Y_1 \perp Z_1$

 \rightarrow Easy computations but not a realistic assumption considering PM and CM. Proportional Hazards model (PH)

 $W_1 \perp U_1$

 $ightarrow \phi$ is constant.

Troves

Delay Time model (Christer [02])

$$Y_1 = A + C, \qquad Z_1 = B + C$$

where A, B and C are mutually independent random variables.

 \rightarrow When A and B are exponentially distributed, it is a PH model and ϕ is constant.

The Random Sign Assumption (Cooke [93])

<u>Definition</u>: $U_1 \perp Z_1$

 $\longrightarrow \phi$ is maximum at the origin.

The Repair Alert (RA) model (Lindqvist-Stove-Langseth [06]):

• Random sign assumption

•
$$P(Y_1 \le y | Z_1 = z, Y_1 < Z_1) = \frac{G(y)}{G(z)}, \quad G(0) = 0, G \text{ is increasing.}$$

•
$$q = P(Y_1 < Z_1) = P(U_1 = 1)$$

Intensity Proportional Repair Alert (IPRA) model: $G = \Lambda_{Z_1}$: ϕ is decreasing.

 \rightarrow Other models based on the Random Sign assumption such as the Highly Correlated Censoring model (Bunea and Bedford [02])

The alert-delay model (AD - Dijoux, Gaudoin [09])

Definition

$$Y_1 = pZ_1 + \mathcal{E}$$

- *p* ∈ [0, 1].
- $Z_1 \perp \mathcal{E}$.
- Z_1 and \mathcal{E} positive random variables.

The exponential alert-delay model

- $Z_1 \sim Exp(\lambda)$
- *E* ~ *Exp*(μ)
- $\rightarrow \phi$ is increasing.

Greno

The generalized competing risks models

 $\label{eq:principle: To generalize the UCR approach by using the past of the maintenance process in order to take into account imperfect maintenances: the <math display="inline">\{(\textbf{W}_i,\textbf{U}_i)\}_{1\leq i\leq k}$ are not iid.

Generalized conditional survival functions:

$$S_{k+1}(y, z; \mathbf{W}_k, \mathbf{U}_k) = P(Y_{k+1} > y, Z_{k+1} > z | \mathbf{W}_k, \mathbf{U}_k)$$

 \rightarrow Generalization of the S^* , CS^* and ϕ functions by conditioning to the past $(\mathbf{W}_k, \mathbf{U}_k)$.

$$\phi_{k+1}(w; \mathbf{W}_k, \mathbf{U}_k) = P(U_{k+1} = 1 | W_{k+1} > w; \mathbf{W}_k, \mathbf{U}_k)$$

 \rightarrow Intensities, distributions of the observations, likelihood function can be easily derived from the $S_{k+1}.$

$$\lambda_{t}^{N}(K,U) = \frac{\left[-\frac{\partial}{\partial z}S_{\kappa_{t-}+1}(y,z;W_{1},\ldots,U_{\kappa_{t-}})\right]_{(t-C_{\kappa_{t-}},t-C_{\kappa_{t-}})}}{S_{\kappa_{t-}+1}(t-C_{\kappa_{t-}},t-C_{\kappa_{t-}};W_{1},\ldots,U_{\kappa_{t-}})}$$

Grenoble

The generalized virtual age models (GVA)

Principle: After the k^{th} maintenance, the system behaves as a new one having been operational an age A_k without being maintained.

$$P(W_{k+1} > w, U_{k+1} = u | \mathbf{W}_k, \mathbf{U}_k) = P(W > w + A_k, U = u | W > A_k)$$

where (W, U) has the same distribution as (W_1, U_1) .

$$\lambda_t^N(K,U) = \lambda_c(t - C_{K_{t^-}} + A_{K_{t^-}}), \text{ where } \lambda_c(t) = \frac{\left[-\frac{\partial}{\partial z}S_1(y,z)\right]_{(t,t)}}{S_1(t,t)}$$

Example: PM and CM are ARA_{∞} :

$$A_{k} = \begin{cases} 0 & \text{if } k = 0\\ (1 - \rho_{c})(A_{k-1} + W_{k}) & \text{if the } k^{\text{th}} \text{ maintenance is corrective}\\ (1 - \rho_{p})(A_{k-1} + W_{k}) & \text{if the } k^{\text{th}} \text{ maintenance is preventive} \end{cases}$$

Two approaches to build a GCR model

Based on generalized virtual age models: It is necessary to specify:

- The competing risks model for a new system (IPRA, DT, AD, ...).
- The maintenance efficiencies for each kind of maintenance based on virtual age assumptions.

Based on a reconfiguration of the parameters: It is necessary to specify:

- The competing risks model for a new system: $CR(\Theta_0)$.
- The evolution of the parameters according to the past of the maintenance process (wear-out, efficiency, reactivity, monitoring, ...) $CR(\Theta_k)$.

Grenob

First classes of GCR models

Conditionally Independent Generalized Competing Risks models (CIGCR -Dijoux, Doyen, Gaudoin [08]): Conditionally to the past $\{W_i, U_i\}_{1 \le i \le k}$, the risks Y_{k+1} and Z_{k+1} are independent.

$$S_{k+1}(y, z; \mathbf{W}_k, \mathbf{U}_k) = S_{\mathbf{Y}_{k+1}}(y; \mathbf{W}_k, \mathbf{U}_k) S_{\mathbf{Z}_{k+1}}(z; \mathbf{W}_k, \mathbf{U}_k)$$

- \rightarrow These models are identifiable.
- \rightarrow IUCR+GVA = CIGCR

<u>Generalized Proportional Hazards models</u> (GPH - Deloux, Dijoux, Fouladirad [12]): After the k^{th} maintenance, time to next maintenance W_{k+1} and kind of next maintenance U_{k+1} are independent conditionally to the past.

$$P(W_{k+1} > w, U_{k+1} = u | \mathbf{W}_k, \mathbf{U}_k) = P(W_{k+1} > w | \mathbf{W}_k, \mathbf{U}_k) P(U_{k+1} = u | \mathbf{W}_k, \mathbf{U}_k)$$

- \rightarrow PH+GVA=GPH
- \rightarrow The maintenance intensities remain proportional.

Generalized Random Sign Models and Generalized Alert Delay Models

- 2 Modelling the maintenance process
- 3 The competing risks framework
- 4 Generalized Random Sign Models and Generalized Alert Delay Models
 - Simulations results and applications to real data
 - Conclusion and future work

Generalized Random Sign models (GRS)

<u>Definition</u>: Conditionally to the past $\{W_i, U_i\}_{1 \le i \le k}$, U_{k+1} and Z_{k+1} are independent.

Properties:

- $\phi_{k+1}(.; \mathbf{W}_k, \mathbf{U}_k)$ is maximum at the origin.
- $RS+GVA \neq GRS$
- There is a condition of existence of a GRS model similar to the one presented by Cooke [93] for UCR models.

$$\begin{aligned} \forall t \ge 0, \quad \forall k \ge 1, \quad \int_{t}^{\infty} \lambda_{c_{k}+u}^{M}(k; \mathbf{W}_{k}, \mathbf{U}_{k}) e^{-\int_{t}^{u} \lambda_{c_{k}+v}^{K}(k; \mathbf{W}_{k}; \mathbf{U}_{k}) dv} \, du \\ < \int_{0}^{\infty} \lambda_{c_{k}+u}^{M}(k; \mathbf{W}_{k}, \mathbf{U}_{k}) e^{-\int_{0}^{u} \lambda_{c_{k}+v}^{K}(k; \mathbf{W}_{k}, \mathbf{U}_{k}) dv} \, du \end{aligned}$$

Generalized Repair Alert model

Definition:

• Generalized random sign assumption

•
$$P(Y_{k+1} \le y | Z_{k+1} = z, Y_{k+1} < Z_{k+1}, W_k, U_k) = \frac{G_{k+1}(y; W_k, U_k)}{G_{k+1}(z; W_k, U_k)}$$

 $G_{k+1}(0; W_k, U_k) = 0, G_{k+1}(.; W_k, U_k)$ are increasing.

•
$$q(\mathbf{W}_k, \mathbf{U}_k) = P(Y_{k+1} < Z_{k+1} | \mathbf{W}_k, \mathbf{U}_k)$$

- \rightarrow Multiple parametrizations are possible
- \rightarrow Possibility to define a Generalized highly correlated censoring model.

Generalized Alert Delay models (GAD)

$$Y_{k+1} = p_{k+1} Z_{k+1} + \mathcal{E}_{k+1}$$

- \mathcal{E}_{k+1} is independent of Z_{k+1} conditionally to the past of the maintenance process
- $p_{k+1} = p(\mathbf{W}_k, \mathbf{U}_k) \in [0, 1].$
- $ightarrow p_{k+1}$ is related to the PM policy and the monitoring of the system.

 \rightarrow The conditional distribution of Z_{k+1} reflects the impact of past maintenances on the risk of failure and the general wear-out of the system.

 \rightarrow The conditional distribution of \mathcal{E}_{k+1} reflects the evolution of the reactivity of the maintenance team.

 \rightarrow AD+GVA \neq GAD

Grenoble

Examples of GAD models

Exponential GAD models consist in GAD models where the conditional distributions of Z_{k+1} and the conditional distributions of \mathcal{E}_{k+1} are exponential with respective parameters $\lambda_{k+1} = \lambda_{k+1}(\mathbf{W}_k, \mathbf{U}_k)$ and $\mu_{k+1} = \mu_{k+1}(\mathbf{W}_k, \mathbf{U}_k)$.

 \longrightarrow Multiple potential parametrizations for $\lambda_{k+1},\ \mu_{k+1}$ and p_{k+1} (Dijoux, Gaudoin)

GAD model associated with virtual age

- A new system has a Weibull type hazard rate.
- The effect of CM is of the virtual age type:

$$P(Z_{k+1} > z | \mathbf{W}_k, \mathbf{U}_k) = \frac{S_Z(A_k + z)}{S_Z(A_k)}$$

- The model is GAD : $Y_{k+1} = pZ_{k+1} + \mathcal{E}_{k+1}$, with a constant alert threshold $p \in [0, 1]$.
- The conditional distribution of \mathcal{E}_{k+1} is exponential with parameter μ .

Simulations results and applications to real data

technologie

- 2 Modelling the maintenance process
- 3 The competing risks framework
- 4 Generalized Random Sign Models and Generalized Alert Delay Models
- 5 Simulations results and applications to real data
 - Conclusion and future work

Grenoble

The model

• GAD model
$$Y_{k+1} = p_{k+1}Z_{k+1} + \mathcal{E}_{k+1}$$
.
• $p_{k+1} = \delta_{i=1}^{k} \prod_{j=i}^{k} (1-U_j) p_{i}$.

 $\rightarrow p$ is the nominal alert threshold, δ is a parameter related to the impact on the threshold after consecutive failures (p = 0.8, $\delta = 0.8$).

• The conditional distribution of Z_{k+1} is exponential with parameter $\lambda_{k+1} = \lambda + \alpha k$.

 $\longrightarrow \lambda$ is the initial failure rate, α is a parameter related to the ageing of the system ($\lambda = 1, \ \alpha = 0.01$).

• The conditional distribution of Y_{k+1} is exponential with parameter $\mu_{k+1} = \beta_{i=1}^{k} \prod_{j=i}^{k} (1-U_j) \mu.$

 $\longrightarrow \mu$ is the nominal delay rate, β is a parameter related to the impact on the delay after consecutive failures ($\mu = 5$, $\beta = 1.2$).

Grenobl

EDF data

 \rightarrow Dataset provided by EDF.

 \rightarrow PM and CM times (in days) of a specific component of an electricity production system.

- \rightarrow 5 PM and 24 CM are observed.
- \rightarrow The observations are right-censored at time 6113.

<u> </u>	CN1 000	CN4 050	C14 110
CM: 290	CIVI: 336	CIVI: 353	CM: 413
PM · 444	CM·453	CM 563	CM: 585
1 101. 1 1 1	CIVI. 100	CIVI. 505	CIVI. 505
• • • • • • • • • • • • • • • • • • • •		• • •	• • •
CN4. 6002	C		
CIVI: 0093	Cens: 0113		

Table : EDF dataset

$\widehat{\lambda}$	$\widehat{\mu}$	p	$\widehat{\delta}$	\widehat{eta}	$\widehat{\alpha}$
Fail. rate	Delay Rate	threshold	imp. threshold	imp. delay	ageing
0.004	0.0011	0.75	0.13	1.07	$1.7 \ 10^{-5}$

Table : Parameter estimation for the EDF dataset

Conclusion and future work

- 2 Modelling the maintenance process
- 3 The competing risks framework
- 4 Generalized Random Sign Models and Generalized Alert Delay Models
 - Simulations results and applications to real data

Conclusion

- Development of a wide variety of competing risks models for imperfect maintenance.
- Numerous parametrizations are possible which require expert opinions on the system.
- The parameters allow to describe phenomena not all present for usual competing risks: the intrinsic wear-out of the system, the evolution of the reactivity of the maintenance team, the evolution of the monitoring, PM efficiency and CM efficiency.

Prospects

- Identify a small number of tractable and flexible models, which provide good fit to real data.
- Transcribe faithfully the expert opinions in the modelling (Bayesian approach)
- Build model selection criteria (extend the procedures based on the diagnostic function for UCR models to GCR models)